欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(12)
  • 图书()
  • 专利()
  • 新闻()

Influence of Diffusion Time on Steel-Aluminum Solid to Liquid Bonding Interfacial Structure

Peng ZHANG , Yunhui DU , Shuming XING , Lizhong ZHANG , Daben ZENG , Jianzhong CUI , Limin BA

材料科学技术(英)

The bonding of steel plate to aluminum liquid was conducted using rapid solidification.The influence of diffusion time on interfacial structure was studied. The results showed that under the condition of 750ºC for the temperature of aluminum liquid and 200ºC for the preheat temperature of steel plate, when diffusion time was shorter than 4.3 s, there was only Fe-Al solid solution at the interface. When diffusion time was longer than 4.3 s, Fe-Al compound began to form at the interface. The relationships between diffusion time t and thickness of Fe-Al compound layer H are H=-9.72+2.62t-0.08t2 (4.3 s[t[15 s) and H=2.79+0.647t-0.033t2 (t>15 s).

关键词: Diffusion , null , null

Semi-solid Pressing Bonding Strength between Steel and Cu-graphite Composite

Peng ZHANG , Yunhui DU , Hanwu LIU , Daben ZENG , Jianzhong CUI , Limin BA

材料科学技术(英)

The pressing bonding of steel plate with QTi3.5-3.5graphite slurry was studied. The relationship among preheating temperature of steel plate, preheating temperature of dies, solid fraction of QTi3.5-3.5graphite slurry, and interfacial shear strength of bonding plate could be established with artificial neural networks perfectly. This model could be optimized with a genetic algorithm. The results show that the optimum bonding parameters are: 618℃ for preheating temperature of steel plate, 526℃ for preheating temperature of dies and 46.2% for solid fraction of QTi3.5-3.5graphite slurry, and the largest interfacial shear strength of bonding plate is 128.3 MPa.

关键词: Steel-mushy QTi3.5-3.5graphite bonding , null , null

Preparation QT3.5-3.5 graphite lubricant material with semi-solid casting technology

Peng ZHANG , Yunhui DU , Daben ZENG , Jianzhong CUI , Limin BA

材料科学技术(英)

For the first time, the distribution of graphite particles in QTi3.5-3.5 graphite ingot was studied by using semi-solid casting technology. The results show that: the relationship between solid fraction and stirring temperature of QTi3.5-3.5 graphite slurry is y=759.4-0.711x (where y is solid fraction, x is stirring temperature). With the increasing of solid fraction of QTi3.5-3.5 graphite slurry, the agglomeration of graphite particles in ingot reduces gradually. The condition to prepare QTi3.5-3.5 graphite lubricant material with even distribution of graphite particles is that the solid fraction of QTi3.5-3.5 graphite slurry is larger than 40%.

关键词:

Influence of Solid Fraction on Structure of QTi3.5-15/Graghite Slurry

Peng ZHANG , Yunhui DU , Hanwu LIU , Daben ZENG , Jianzhong CUI , Limin BA

材料科学技术(英)

The electromagnetic-mechanical stirring technology was used to prepare QTi3.5-15/graghite slurry. The distribution of graphite particles in QTi3.5-15/graghite slurry was studied using cold quenching method. The results show that solid fraction of QTi3.5-15/graphite slurry increases with the decreasing of stirring temperature. There is a linear relationship between solid fraction and stirring temperature. With the increasing of solid fraction, the distribution of graphite particles in slurry becomes uniform gradually. When the solid fraction is larger than 45%, the rising of graphite particles in slurry can be restricted, and QTi3.5-15/graghite slurry with uniform distribution of graphite particles can be prepared.

关键词: null , null , null

Influence of solid fraction on gravity segregation of Sn in A1-20Sn alloy casting

Peng ZHANG , Yunhui DU , Daben ZENG , Jianzhong CUI , Limin BA

材料科学技术(英)

The influence of solid fraction of AL-20Sn alloy mushy on gravity segregation of Sn in casting was studied and, the relationship between solid fraction and the temperature of alloy mushy and that between solid fraction of alloy mushy and size of Sn particle in ingot were determined. The results show that the relationship between solid fraction and the temperature of alloy mushy was f(s)=1683-4.86t+0.0035t(2). The extent of gravity segregation of Sn in casting reduced gradually with the increasing of solid fraction of alloy mushy. When solid fraction of alloy mushy was larger than 40%, the gravity segregation of Sn in casting could be removed basically, and the relationship between solid fraction of alloy mushy and size of Sn particle in ingot was s=-0.64f(s)+70.8.

关键词:

Effect of Relative Reduction on Property of Steel-Mushy Cu-Graphite Composite

Peng ZHANG , Yunhui DU , Hanwu LIU , Daben ZENG , Jianzhong CUI , Limin BA

材料科学技术(英)

The rolling treatment of steel-mushy QTi3.5-3.5 graphite composite was conducted under different relative reduction at room temperature. The effect of room-temperature rolling on interfacial mechanical property of steel-mushy QTi3.5-3.5 graphite composite was studied and the relationship between interfacial shear strength and relative reduction was established. The results show that, for steel-mushy QTi3.5-3.5 graphite composite, which consists of 1.2 mm-thick 08Al steel plate and 2.8 mm-thick QTi3.5-3.5 graphite layer, there is a nonlinear relationship between interfacial shear strength and relative reduction in graphite layer. When relative reduction is smaller than 1.1%, interfacial shear strength increases with increasing the relative reduction. When relative reduction is larger than 1.1%, interfacial shear strength decreases with increasing the relative reduction. When relative reduction is 1.1%, the largest interfacial shear strength of 145.2 MPa can be obtained.

关键词: Rolling , null , null , null

Fractals in Steel-Aluminum Solid to Liquid Bonding

Peng ZHANG , Yunhui DU , Xueping REN , Limin BA , Hanwu LIU , Jianzhong CUI

材料科学技术(英)

This paper studied the fractal characteristic of the interfacial shear surface of steel-Al solid to liquid bonding plate, and determined the relationship between fractal dimension and interfacial shear strength. The research results showed that the relationship between fractal dimension and interfacial shear strength could be described as y=26.2x+4.2 (where y was interfacial shear strength, x was fractal dimension) and when 08Al steel plate was coarsened by steel wire wheel which was made up with steel wires whose diameter were 1.4-1.6 mm, the optimum coarsening pattern of the steel plate surface could be got, the corresponding maximum interfacial shear surface fractal dimension of the bonding plate was 2.33, and the maximum interfacial shear strength of the bonding plate was 65.3 MPa.

关键词:

Influence of Pressing Time on Steel-copper-graphite Bonding

Peng ZHANG

材料科学技术(英)

The bonding of steel plate with QTi3.5-3.5 graphite slurry was studied by using pressing bonding technique. The influence of pressing time on the interfacial mechanical property of bonding plate was researched. The results show that: under the conditions of 620℃ preheating temperature of steel plate, 530℃ preheating temperature of dies, 46% solid fraction of QTi3.5-3.5 graphite slurry and 50 MPa pressure, there exists a nonlinear relationship between pressing time and interfacial shear strength. The interfacial shear strength of bonding plate increases with increasing pressing time and reaches a largest value about 127 MPa when pressing time is longer than 120 s. At the interface with the best mechanical property, there exists a continuous Fe-Cu inter-diffusion zone and a metallurgical bonding.

关键词: Steel-copper-graphite bonding , null , null

  • 首页
  • 上一页
  • 1
  • 2
  • 下一页
  • 末页
  • 共2页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词